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Abstract

Fast Gradient Sign Method [2] is used to find perturbations of the input image1

that causes the victim model to misclassify it, the perturbation is found using2

the gradient direction of the loss function with respect to the input pixels. An3

adversarial example is misclassified when the features move from the region of4

the correct class to a region of a different class in the feature space, it essentially5

means we force the example to cross a classifier’s boundary. In this project, we6

will demonstrate a new version of this attack that will also cause the image to7

be misclassified by changing the region of the input features in the feature space.8

However, in the Feature-based FGSM we will not find the perturbation using the9

training loss and output neurons, but rather we will be using a new loss applied to10

the intermediate features, neurons, of the model.11

1 Introduction and problem formulation12

White box attacks are the type of adversarial attacks where the adversary has access to the parameters13

of the victim model, which allows the usage of gradient methods to produce unnoticeable perturbations14

to inputs in order to misclassify them. Fast Gradient Sign Method is an effective and computationally15

efficient attack, it simply perturbs the input pixels of the image pixels by a step size, ϵ, in the direction16

of the gradient of the loss in order to increase the loss and hence misclassify the image. The higher17

the value of ϵ, the more detectable are the perturbations and the lower the accuracy of the model, if18

we want to achieve an overall low accuracy for the model, we need to use high values of ϵ only cause19

a small portion of the data.20

This means that in order to reduce the overall accuracy of the model we need to sacrifice confidentiality21

of the attack. The proposed method, Feature-Based FGSM, tries to find a gradient direction which22

allows the usage of a small perturbation step ϵ and still reduces the overall accuracy of the victim23

model. The idea is to make the features of the input image in the last layers of the network change24

such that they look more similar to other classes more than the original class, this means that the25

classifier will misclassify this image and the accuracy will decrease, more details in the next section.26

2 Methodology27

When we are using FGSM attack, we find a perturbation that will increase the training loss using28

the gradient of the input with respect to the loss function. This can be seen as moving the input29

towards the classifier’s boundary in the feature space as in Figure 1. The assumption is that direction30

of this gradient is guaranteed to increase the loss, however it does not guarantee that it is the optimal31

direction towards a boundary because the loss would still increase even if we only change a subset32

of the features. For example, if a point has 2 features x and y and we change only one feature we33



Figure 1: Increasing loss intuition

can only move in a limited direction, whether the x axis or y axis, in the feature space, we can move34

the point away from its original class but we will need bigger steps as we are not using an optimal35

direction. If we are able to change all the features then we can find a direction that uses fewer steps36

to reach the target (cross the boundary) and hence this means a smaller ϵ. In order to find the optimal37

direction in the feature space, we need to change the pixels such that target is to move the features38

of the image away from original class directly and not just increase a classification loss which may39

cause us to use sub-optimal directions. We find this gradient direction by extracting the features of40

the source image, feeding it to a Euclidean distance loss function between these features and a mean41

feature vector which will pull the features away from the original class, and finding the gradient of42

the input pixels with respect to the loss. There are two variations of this attack:43

1. Targeted: Where our target is to minimize the euclidean distance between the features of44

the source image and a mean feature vector of the target class so that input image features45

look like the target class features. The mean feature vector is obtained by passing a batch of46

target class images through the network, extracting and flattening their features from the last47

convolutional layer, and finding the mean of these features. This loss can be represented as:48

J =
∥∥∥f(x)− f(B)

′
∥∥∥2
2

Where x is the input image, f is the network feature extractor, B a batch of images that49

belong to the target class, and f(B)
′

is the mean vector of the target class batch which is50

mean to server as a typical "style" vector that the input image. Changing more features51

towards f(B)
′

is what will decrease this loss, while in FGSM even changing fewer number52

of features will decrease loss but we wouldn’t guarantee changing most of the features when53

needed.54

And here, the perturbation δ is:55

δ = ϵsign(∆xJ(θ, x,B))

Where ϵ is the step size, θ is the parameters of the model, x is the input image and B is the56

target class batch.57

We change x to x∗ through:58

x∗ = x− δ

2. Untargeted: Similar to the targeted attack in terms of the idea and the loss used, but different59

in terms of the value of f(B)
′

and optimization goal. Here f(B)
′

denotes the mean features60

vector or style vector of the source image, which is the input image, and the optimization61

goal is to maximize the Euclidean distance which yields:62

x∗ = x+ δ

This has the effect of moving the image away from its original "style" or other source images63

in the features space.64
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3 Experiments65

3.1 Implementation66

This attack was tested on a small network, LeNet, and a large network, GoogLeNet [3] which was67

used in the original FGSM paper. LeNet was trained on the MNIST dataset while GoogLeNet68

was trained on ImageNet [1]. For both models, we loop over test images obtained from either the69

validation or test data, extract features of the image, extract the features of the target batch (the source70

class in the untargeted case, and the target class in the targeted case), feed those two feature vectors71

to the loss function and then find derivative of input pixels with respect to the loss and update them72

accordingly. Below you can find the implementation algorithm:73

Algorithm 1 Features-Based FGSM
LS ← Loss type
B ← None
T ← Target class
M ← Target model
n← function LENGTH(data)
correct← 0
for x, label in data do

if LS == "Targeted" then
if label == T then

n = n− 1
Continue

else
B ← function GETBATCH(T )

end if
else

B ← function GETBATCH(label)
end if

f(B)
′ ← function AVG(f(B))

loss← J(f(x), f(B)
′
)

δ ← ϵ sign(∆xloss)

if LS == "Targeted" then
x∗ = x− delta

else
x∗ = x+ delta

end if

l∗ = M(x∗)
if l∗ == label then

correct← correct+ 1
end if

end for
Accuracy ← correct

n

Where label is the true label of the source image, f is the feature extractor of the network, J is the74

loss function, x∗ is the adversarial example, l∗ is the model’s output label for the adversarial example,75

and n is the total number of attempted adversarial images. We removed all images belonging to the76

target class from the test images in the targeted case. We also removed images that were initially77

misclassified by the model without any perturbation so that we only try to perturb images that the78

model classifies correctly.79
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3.2 Results80

We report the results for each model separately, we compare the results of our attack to the perfor-81

mance of the FGSM attack on these models below.82

3.2.1 GoogLeNet results83

We tried 7 different epsilons for each variation of the attack, the test data used consists of 5000 images84

of 1000 classes, 5 examples were sampled from every class. The attack reduce accuracy of the model85

from 100% to approximately 49.5% using ϵ = 0.05 for the untargeted attack. The targeted attack86

reduce accuracy from 100% to approximately 48.6% using the same value of ϵ. Figures 2 and 3 show87

results for different epsilon values, while Figures 4 and 5 show samples of perturbed images for each88

epsilon value.

Figure 2: Targeted attack on GoogLeNet
89

Figure 3: Untargeted attack on GoogLeNet

3.2.2 FGSM on GoogLeNet results90

The FGSM attack was applied to the same test data used for Features-Based FGSM using the same91

values of ϵ, it reduces the accuracy of the model from 100% to 0.733% using ϵ = 0.05, results are92

reported in Figure 6.93

3.2.3 LeNet results94

Features-Based FGSM attack was tested on a LeNet model trained on the MNIST dataset, attack95

was tested on 10000 images for each variation of the attack. The untargeted attack reduce accuracy96

only slightly from 100% to 98.9% for ϵ = 0.05 but the accuracy kept decreasing until it reached 39%97
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Figure 4: ImageNet adversarial samples from targeted attack

as we increased ϵ, check Figure 7 and 8. The targeted version reduce the accuracy from 100% to98

88.46% for ϵ = 0.05. Results are in Figure 9 and 10. However, FGSM outperforms both the attacks99

as we can see in Figure 11.100

4 Thoughts and conclusion101

The proposed attack works and reduces the overall accuracy of the model. However, it does not102

overperform the FGSM attack. Smaller values of ϵ in the FGSM attack yielded lower accuracy than103

the Features-Based FGSM attack. Results were different for targeted and untargeted versions of the104

attack; the untargeted attack greatly outperformed the targeted attack on the MNIST dataset while105

unperformed slightly on the ImageNet data, the reason is, to the best of my knowledge, the difference106

in the number of classes that the model is predicting. The MNIST dataset only has few classes and107

hence the distributions of each class could be far away from other classes in the feature space, so108

when we choose a specific class to move the adversarial example in its direction, we will need a high109

epsilon as they might be very separated in the feature space. For the untargeted attack on the MNIST,110

a larger epsilon value was able to reduce the accuracy down to 39%, because we do not specify when111

class the adversarial example needs to follow, the gradient will point towards the closest boundary112

or set of classes and so a smaller ϵ is needed. So, the more classes the model works with, the more113

vulnerable it is because you get a higher chance of getting 2 classes close to each other in the feature114

space so you will need a smaller perturbation value to cause a misclassification.115

For the ImageNet dataset, there is a large number of classes in the feature space and hence the116

boundary is more complex and easier to reach through perturbations, both targeted and untargeted117

attacks reduced accuracy of the model to less than 50% with a small value of 0.05 for ϵ.118

To conclude, the proposed Features-Based FGSM attack works and finds a proper perturbation.119

However, it does not use a smaller perturbation amount ϵ as assumed before the experiments.120
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Figure 5: ImageNet adversarial samples from untargeted attack

Figure 6: FGSM attack on GoogLeNet

Figure 7: Untargeted attack on MNIST
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Figure 8: MNIST adversarial samples from untargeted attack

Figure 9: Targeted attack on MNIST
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Figure 10: MNIST adversarial samples from targeted attack

Figure 11: FGSM attack on MNIST
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